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On hydromagnetic spin-up 

By S. S .  CHAWLA 
Department of Mathematics, Indian Institute of Technology, Kharagpur 
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In this paper we study the generation and propagation of hydromagnetic waves 
during the spin-up of an electrically conducting, viscous fluid. The time-dependent 
motion is set up by the impulsive rotation of an infinitely conducting plane which 
is initially in rigid-body rotation with the fluid, the applied magnetic field being 
parallel to the axis of rotation. The hydromagnetic flow is permeated by two 
distinct wave modes and the region between their wave fronts supports harmonic 
waves produced by the inertial oscillations. The characteristics of these modes 
are discussed for some limiting cases of interest. 

1. Introduction 
This paper is concerned with the influence of magnetic forces on the behaviour 

of a rotating, viscous, incompressible conducting fluid during the spin-up process. 
It is now well known (Greenspan 1968) that in the absence of external forces the 
spin-up leads to the formation of an Ekman layer on the parts of the container 
in contact with the fluid, the final state being achieved through a series ofinterac- 
tions between viscous diffusion and inertial oscillations. In  fact (as shown in 
$ 3  of this paper) the spin-up is marked by the propagation of shear-type decaying 
wave trains generated by the above-mentioned interaction. The triangular 
interaction between diffusion (viscous and magnetic), inertial oscillations and 
Alfvkn propagation gives rise to a complicated wave system which is the particular 
concern of the present investigation. 

The physical problem described here is similar (but with a change in the 
boundary conditions on the magnetic field) to the one discussed recently by 
Benton & Loper (1969). The motivation for reconsidering the problem is based 
on the fact that their analysis does not reveal adequately the significant role 
of inertial oscillations in the spin-up process. As a result, the wave character of 
the flow has been overlooked. Hydromagnetic waves are in fact a dominant 
feature of the time-dependent interaction for all times and have a crucial bearing 
on the approach to the ultimate state. In  the present investigation, we have 
derived a relatively simple and complete description of the hydromagnetic flow 
which is valid for almost all times. 
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2. Equations of motion and the Laplace transform solution 
The fluid is assumed to fill the space between two pole-pieces at  z = 0,  h of a 

magnet of strength H, which is supposed to be a perfect conductor. The whole 
system is in rigid-body rotation with angular velocity Q about an axis normal 
t o  the two pole-pieces. At time t = 0 the angular velocity of the pole-piece at 
z = 0 is impulsively changed to Q(l + E ) ,  where the Rossby number e < 1. In 
this paper we shall be concerned with infinitely separated pole-pieces, that is, 
h = co. We take cylindrical polar co-ordinates (r,  8, z )  with accompanying fluid 
velocity V, magnetic field H and hydromagnetic pressure p .  For consistency with 
the axial symmetry and continuity equations, we define 

V = rQ6 + eQ[rF,F + rG6 - 2 F i ] ,  

H = Ho2+sQ[-rN,P-rM6+N&], ( 2 . 2 )  

p = +pr2Q2 + s Q P ,  

(2.1) 

(2.3) 

where F ,  G, N ,  M and P are functions of z and t only, p is the density and P, 6 
and 2 are unit vectors in the r ,  8 and z directions respectively. Substituting (2.1)- 
(2.3) in the basic hydromagnetic equations and neglecting terms quadratic in B 

leads to 
4 2 ,  - qt + 2QG = (PHo/P) 8,) (2.4) 

VG,, - Gt - 2QF, = (pHo/p) Ma, (2 .5)  

?lN,z,-%t = HO42) (2.6) 

7% - Iw, = 4 G z .  (2.7) 

Here p, v and 7 are the magnetic permeability, kinematic viscosity and magnetic 
diffusivity of the fluid respectively. Since the surface in contact with the fluid 
is a perfect conductor, the tangential current must be zero on z = 0. Also, all 
perturbations to the applied magnetic field must vanish at  large distances from 
the pole-piece. Thus the appropriate initial and boundary conditions are 

F = F , = G = M = N = N , = O  for z > O  ( t = O ) ,  (2.8) 

for t 2 0. (2.9) 
F=F,=O,  G = 1 ,  M , = N , , = N = O  on z = O  

Fz,G,M,N,-+O as z - f c o  

Now we set P = c+iQ, Q = N,+iM,  (2.10) 

(2.11) 

so that P and Q are given by 

vP, - pt - 2iQP = (pH,/p) Q,, Q Q ~ ~  - Qt = HOP,. 

v P , - ( s + 2 i Q ) P  = (@Zo/p)Q,, ~Qzz - sQ = HOP,, (2.12) 

The Laplace transforms of P and Q satisfy the equations 

with P(0) = i / ~ ,  Q,(O) = 0 ,  P(co) = &(a) = 0, (2.13) 

where s is the transform parameter with respect to  t and the same symbols are 
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used for transformed and untransformed quantities. The general solution of the 
system (2.12) with (2.13) is 

where 
P = A e-ntiz+ B e-mzz, Q = C e-miz+ D e-m2z, (2.14) 

1 
m,, m2 = - ({A; + [(qs + 2iyQ2)+ + (VS)+]2}+ It (A; + [(ys + 2 i q W  - (vs)+32)4 

2 W ) +  
(2.15) 

and A, is the Alfven velocity (,uHbIp)3. The constants of integration A ,  B, C 
and D are given by 

(2.16) 

(2.17) 

i(s + 2iQ - vmg) i ( s  + 2iQ - vm;) A =  B =  
vs(m: - mi) ' vs(m% -mi) ' 

m,C = -m2D = - i H u ( s + 2 i ~ ) / r v s ( m : - m % ) .  

3. Spin-up in the non-magnetic case (q = 03) 

1968, p .  30) 
It can be easily shown that the solution in this case is given by (Greenspan 

P = &i{exp [ - 2(2i!2/v)t] 

x erfc [2/2(vt)* - (2iQt)*] + exp [2(2iQ/v)&] erfc [2/2(vt)&+ (2iQt)iI) .  (3.1) 

This gives a unified representation to the initial Rayleigh flow, the final steady 
Ekman layers and the decaying inertial oscillations. Expression (3.1) also shows 
that the spin-up process admits the generation and propagation of diffused 
waves. To demonstrate this, we make use of a result of Strand (1965) regarding 
the representation of an error function with complex argument. 

Strand (1965) has shown that, for x > 0, y 2 0,  

with y,(x) = erfcx. 

Since 

these cases axe also covered by (3.2) and (3.3), but the case x = 0 is not. $(x, y) 
is a complex function which tends to zero as x --f 03. 

erf [ - (x + iy)] = - erf (x + iy) and erf (x - iy) = erf (x -t- i y )  

If we now set 
z = 2/2(vt)++(Qt)& and y = (Qt)J  

we can write 

35-2 
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Thus (3.1 ) can be expressed as 

where $(z,y) is the complex conjugate of Q(x,y). Displayed in this form, the 
function P clearly shows its wave-like behaviour and expresses velocity (and 
hence vorticity) as diffusion from a source travelling with velocity 2(vCl)* away 
from the rigid container. Equation ( 3 . 5 ~ )  represents flow behind the wave front 
z = 2(vQ)*t,  whereas (3 .5b)  gives the flow ahead of it. However, the wave decays 
in time of order $Q through a distance O[(w/Q)*], the Ekman depth. The first 
term in (3.5) gives the mirror image of the travelling source. Finally, the last 
term in ( 3 . 5 ~ )  yields the ultimate Ekman state. 

4. The limit of vanishing (magnetic and viscous) diffusivity 

x = 0) is given by 
For y -+ 0, v -+ 0 the inverted solution (satisfying the no-slip conditions on 

-iJo[(Q/A,) (u~A;-.z')+] 
uA, J1[( Cl/Ao) (u2Ag - x2)4]  

( (uZAg - x2)* 

F = A,t[sin(Qt)J,(Qt)+cos(Qt)J,(Qt)] 

where H(t  - z/A,) is the Heaviside unit function and J, and J1 are Bessel functions 
of the first kind. It can be immediately seen from (4.1) to (4.3) that the perturbed 
azimuthal and radial fluid motion and field lines are confined to z 6 A,t and 
that the front z = A,t of the hydromagnetic wave packets travels with the 
Alfvbn velocity A,. The region behind the wave front supports a stationary 
wave, of wavenumber Q/A,, which in a weaker sense is circularly polarized; this 
represents the radial expansion of the Alfvbn front. The fluid column ahead of 
the wave front oscillates purely vertically. In  the absence of Coriolis force, F = 0 
and expressions (4.1) and (4 .2 )  represent Alfvbn waves in a non-rotating medium, 
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these being similar to those obtained by Ludford (1959). The splitting of Alfvkn 
waves is a characteristic outcome of the Coriolis-Lorentz force balance. 

Now (4.1) can also be expressed as 

so that P 3 i as t -+ co. Equation (4.3), on the other hand, does not lead to a finite 
estimate of the steady axial flow. We thus reconsider the Laplace transform of F ,  
which gives the steady-state solution as F(z, co) = limsF(z, s), provided that 

this limit exists. By taking the limit (with z fixed), we obtain a quasi-steady 
value of the function F in the form 

s+o 

F = Reixerfc [I (T) 2 i a  + ] 
2 4  

(4.5) 

Expanding this with the help of Strand series (3.2) and (3.3), we get 

Q22 +o(t-l)). (4.6) 

It is evident from (4.1)-(4.3) that the initial discontinuity moves away from 
the pole-piece as an Alfv6n wave packet, which is both a current sheet and vortex 
sheet. At large times, the Alfvkn front nears spatial infinity whereas its tail, 
far behind, is trapped by the gradual inhomogeneity caused by the continual 
distortion of vortex lines and magnetic field lines; the collapsed wave pattern 
diffuses with 'induced) diffusivity Atla.  

5. The boundary layer and the flow outside 

limit as Y and z tend to zero while z / d  remains finite. In  the limit Y + 0 
For any fixed 7 4 0, the boundary-layer solutions are found by taking the 

such that (vs)" is not finite. As such, the analysis of this section is not valid for the 
initial stages of the spin-up process. The Laplace transform of velocity function 
P within the boundary layer is given by 

" ). (5.2) 
+ A ;  + q(s + 2x2)  

P = - (  i 8 Ag/q+s+s ia  s+2ia exp [ -z(* 

Inversion gives 

+exp [ z  ("";$"")"I erfc [&&+ (e + 2ia)  t ) ' ]] .  (5.3) 
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Using Strand's results, (3 .2)  and (3 .3) ,  the second term in curly brackets in (5.3) 
can be written as 

+ ~ [ C O S  (z(Rv)% sin 8) + i sin (z(R/v)+ sin e)] exp [ - z(B/v): cos 01 

for x < [2(vR)4 cos el t ,  (5 .44  

, (Rt): sin 0) 
2 + 2(vR)3  cos 0t 

exp [x(R/v)* cos 01 4 

Expression (5.4) corresponds to diffusion from a source of effective diffusivity v, 
travelling away from the pole-piece with velocity 2(vR)4 cos 0 (the first term 
is the mirror image of this source). The effective decay length of the wave is 
(v/R)+sec0, so that the wave damps out in time of order (1/2R)sec28. This 
attenuated hydromagnetic wave system emerges because of the interaction of 
the diffusing Rayleigh layer both with the inertial oscillations and the applied 
magnetic field. For A$/? 9 2Q, the wave front moves with velocity 2A0(v/7)* 
and the effective damping distance of the diffused waves is the Hartmann 
depth (vyp/pH$)*. For A$/7 6 2Q, on the other hand, the velocity of wave 
propagation is 2(vQ)* and the decay length is the Ekman depth (v/Q)+. The 
last term in (5.4a) corresponds to the ultimate Hartmann-Ekman state. 

For inviscid flow outside the boundary layer, we keep 7 and x fixed as we 
let v + 0 ,  and obtain 

iA$ 
P =  . ~ (A$+7(s+2 i f i ) )~~ '  [ -' ( A $ + 3 ( s + 2 i Q )  

An indication of the flow outside the boundary layer is provided by the first 
term in (5 .3 ) ,  in which the second part sustains up to times of order Ai/q. (This 
term in fact is not negligible outside the inner layer and does affect conditions 
there.) Expressions (5.6) can thus be simplified further for two cases of interest, 
for instance, by ignoring A$/r compared with 1s + 2iQI. For A ~ / T  6 1s + 2iQ1, 
inversion of (5.6) gives 

z exp(-2iQZt) 2iQ 5 
P z 23Q -(erfc A2 2 (exp[z( - 7) ] erfc [ k4 + ( - 2 i ~ t ) * ]  

+exp [ - 2  (-T) 2x2  4 ] erfc [2+- ( -  2 i Q t ) i ] ) ) .  ( 5 . 7 )  
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This can be written as 

P z 2 erfc 2($)* - 2 - exp[ -z(f)'] (cos[(!)'z-~nt] +isin[(f)*z-2nt]) 

Interpreted as before, (5.8) expresses P as diffusion from a source (and its mirror 
image) of diffusity q moving with velocity 2(qR)* through a depth (q/R)*. 
Moreover, the region between the edge of the viscous layer and the wave front 
z = 2($2)* t supports harmonic electromagnetic waves, of wavenumber (R/q)*, 
generated by the inertial oscillations of the layer behind. 

For Ag/q 9 1s + Z i Q I ,  inversion of (5.6) leads to (4.1) and should be interpreted 
in the same manner. 

Now we match the two Laplace solutions (5.2) and (5.6) and integrate to get 
the axial flow: 

P = Re [I -exp ( - 2  [" 
i v b p ( s  + 2iQ)  

iA; 
+ d ( S  + 2iQ) [A; + q(s + 2iQ)]+ 

Evidently the last term becomes indeterminate for s = 0 (in the steady state). 
Thus the quasi-steady solution is given by taking the limit s + 0 (with z fixed). 
We get (on inversion) 

erfc [' ( "' )'I). (5.10) 
izAg 

+AX+ZiqQ 2 (Ai+2i7R)t  

The first term gives the steady Hartman-Ekman layer whereas the second term 
shows that the outer region diffuses parabolically with a characteristic diffusion 
constant yR/Q( 1 + sin 20). This immediately follows if we expand (5.10) by 
means of Strand series (3 .2 )  and (3 .3) .  

6. Small-time behaviour 
For general values of the flow parameters, the small-time behaviour of the 

flow functions corresponds to  large 181. In  letting 1.1 be large, we must keep away 
from the branch point s = - ZiR, so that we take 1s + ZiRl large instead. m,, m2, 
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A and B are then given by 

+...I ,j s+2iQ B A;+ZiR(y-V) 
m2 = ( - 7 ) [1-2(r--v)(s+2iR) 

Inversion gives 

and a similar expression for Q. The initial impulsive motion immediately causes 
a Rayleigh layer to develop. This then starts to thicken owing to viscous dif- 
fusion. The effect of rotation manifests itself through intertial oscillations and 
this results in the propagation of the diffusing source with velocity 2(vQ)g 
through the Ekman depth ( v / Q ) t .  The distortion of the applied magnetic field 
by the Rayleigh shear generates electric currents and, owing to the finite electrical 
conductivity of the fluid, the Rayleigh current layer tends to spread away from 
the rigid boundary. The interaction of this growing current layer with rotation, 
again through the inertial oscillations, leads to the propagation of diffused 
electromagnetic waves with velocity 2(70)4 through the Ekman current layer 
of thickness (r/Q)t.  A t  a later stage, the interplay of these waves and the Alfvhn 
propagation yields a rather complex system of hydromagnetic waves. 

7. Asymptotic solutions and approach to the ultimate state 
The dominant contributions to P and Q as t - t w  are associated with the 

singularities of the field functions at s = 0 and -2iR. Moreover, the final be- 
haviour corresponds to the regions of the complex plane near s = 0. In order to 
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study the approach to the ultimate state we expand the flow functions in 
ascending powers of Is\, taking Is] and Is(s+ 2iQ)l* to be small. The result is 

(7.3) i 
(v+?/?)Az,+ZiQq2 

2 ( 4 +  2iqQ)2 ' where K = - 
q2(Ai + 2 i ~ Q ) ~ +  6~7A; (Ag  + 2iqQ) + v2Ai(A; - 8iyd) 

8(A; + 2iqQ)4 
A =  

We note that in the above process the flow functions retain the branch points 
of the original expressions. Inversion of Q and the current function Q,, after 
some simplifications, yields 

where KO and K ,  are modified Bessel functions of the second kind. 
Invoking Strands' results, (3.2) and (3.3), we can easily show that the first. 

term in (7.4) represents a diffused hydromagnetic wave propagating through the 
Hartmann-Ekman layer with velocity V given by 

2v$q2Rt[(v + 7) A; cos 38 + 2Qq2 sin 381 
3 (7.6)' (y + V ) 2 A i  + 4QZq4 

V =  

where R and 0 are given by (5.5). For (v/q)+ small, the velocity of wave propaga- 
tion is 2(vR)*cos8 (this is the same value as that obtained in §5), whereas for 
At/y 2Q the wave propagates with velocity ZAo(qv)S / (~+v) .  The physical 
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interpretation of the second mode of field functions depends largely upon the 
behaviour of the modified Bessel functions KO and K ,  at large time t. Far away 
from the pole-piece, we take ( t z  - x2Ai/q2R2) to be small, but 2Qx2/qR2 to be large 
so that we can write 

The field functions thus correspond to a diffused hydromagnetic wave packet 
consisting of dispersive harmonic waves of wavenumber R(q/Q)* and group 
velocity qR/A,. For Ag/q & 2Q, the wave velocity is Ag/(qQ)* and group velocity 
is the Alfven velocity A,. However, these waves decay through a distance of 
order (RlQ) (q/Q)Ji. We h d  again that the electromagnetic-Coriolis force balance 
splits the hydromagnetic waves. Rotation is also responsible for the decay of 
these waves. It is evident from (7.1) that, in the absence of Coriolis force, un- 
damped diffused Alfven waves propagate in the outer region. 

For large t ,  u in (7.5) is large along the entire path of integration, so we use 
the asymptotic expansion of K ,  (with x fixed). In  the quasi-steady state, (7.5) 
leads to 

x(2iQ))" 
[nt(A$ + 2iqQ)]t 

- 

The &st wave mode (of phase velocity V given by (7.6)) decays through the 
Hartman-Ekman layer and ultimately viscous diffusion and the distortion of 
vortex lines and magnetic field lines in the inviscid region are balanced. The 
modified Alfv6n wave packet, on the other hand, collapses (owing to the in- 
homogeneity caused by the above-mentioned distortions) to merge with the 
magnetic diffusion so that the effective diffusion constant of the growing region 
now becomes qR/Q( 1 +sin 20) (as shown in $ 5 ) .  

In  the quasi-steady state, expression (5.1 1) gives the axial velocity a t  infinity as 

P(oo) = - 2 d Q  cos 30/R3, (7.9) 

which, for the non-magnetic case (q  -+ a), yields F(a) = $(v/Q)a. As the strength 
of the applied magnetic field is increased, the suction velocity decreases and 
becomes zero when Ai/q = Zd /J3 .  For AE/q > ZQ/J3, there is an outflow at 
infinity which reaches a maximum when Ai/q = ZQ cot in and then starts to 
decrease. For At/q % ZQ, the axial outflow decreases according to 

P(a) M -2 (vq )b /a /Ag .  (7.10) 

With the increase in the strength of the applied magnetic field, the inward 
radial body force, generated by the interaction of the perturbed azimuthal current 
and the axial field, is very much greater than the perturbed hydrodynamic 
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pressure. The transition from suction to  injection st infinity is caused by the 
‘pinch effect’ of this imbalance. 
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